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DIAGNOSTICS OF POWERFUL ELECTRON BEAMS

USING TOTAL-ABSORPTION CALORIMETERS

UDC 536.6+539.12.04A. P. Stepovik and D. V. Khmel’nitskii

The possibility of diagnosing an electron beam ejected into the atmosphere using total-absorption
calorimeters is examined for the purpose of studying dynamic effects in materials irradiated in pow-
erful electron accelerators. A diagram is given of the ring calorimeter used to measure energy fluence
in IGUR-3 and ÉMIR-M accelerators up to values of (2.0–2.5) · 102 J/cm2. The fraction of the
incident electron energy absorbed in the calorimeter is calculated, the effect of the electron spectrum
on the measurement results is shown, and heat-transfer problems are considered. It is established
that measurement results can be used to determine the volume-averaged calorimeter temperature at
the moment of termination of the electron pulse; this temperature is uniquely related to the electron
energy absorbed in the calorimeter.
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One method of loading materials by a short pulse of mechanical stress is exposure to a powerful electron
beam (a duration of 10−8–10−7 sec and a total beam current of tens of kiloamperes) [1]. Energy absorption in
a time much smaller than the mechanical inertia of the material gives rise to thermoelastic stresses in it. This
allows one to study spallation and to measure the thermodynamic and elastic parameters of materials [2, 3]. The
relationship between the thermal pressure P that arises and the absorbed electron energy Ea is expressed by the
well-known relation [4] P = ΓdEa (Γ is the Grüneisen coefficient of the material and d is its density).

The absorbed electron energy depends on the incident electron spectrum and energy fluence, which needs
to be measured during pressure calculation. [The term particle energy fluence implies the ratio of the total energy
(except for the rest energy) of all ionizing particles penetrating into the volume of an elementary sphere to the
cross-sectional area of this sphere.] In powerful accelerators, the cross-sectional energy distribution of the electron
beam ejected into the atmosphere [1] is insufficiently uniform; therefore, one needs to develop a diagnostic method
that ensures minimum shadowing of the irradiated sample surface by the sensor (film dosimetry, foil calorimetry,
etc.).

The energy fluence of the electron beam irradiating material samples was measured by calorimeters of
two types: foil and total-absorption calorimeters [5]. Among the advantages of the calorimetric method are the
possibility of recording the heating of the calorimeter after termination of the noise accompanying the operation of
such devices [6] and the small dimensions of the sensor, which is important because of radiation inhomogeneity in
the beam cross section.

Results of measurement using foil calorimeters are presented in more detail in [5]. These calorimeters allow
measurements of the energy fluence of the electrons incident directly on a sample. However, foil calorimeter readings
depend strongly on the sample material (from the data of our measurements, the readings can differ by a factor of
2 or 3) because the energy of the electrons reflected from the calorimeter contributes to the calorimeter heating.

In total-absorption calorimeters, the effect of reflected electrons is significantly diminished, but these
calorimeters measure the energy fluence only in the neighborhood of a sample. The measurement error due to
this factor is largely determined by the degree and shape of the energy distribution inhomogeneity in the electron
beam cross section.
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Fig. 1. Diagram of the ring calorimeter: steel ring (1), casing (2), guys (3), ring
calorimeter (4), central calorimeter (5), and thermocouples (6).

In the development of diagnostic procedure using the indicated calorimeters on IGUR-3 and ÉMIR-M facili-
ties [1], local copper and steel calorimeters 2–3 mm thick and 3.5–6 mm in diameter were employed. Thermocouples
were sealed in the calorimeter body from the rear side (relative to the electron flow) and were then glued to a plate
of laminate (which has the highest resistance to the action of electrons compared to the other organic materials).
For an energy fluence of up to 10 J/cm2, such calorimeters can be used repeatedly. However, for large values of
this parameter (due to thermal shock), the calorimeters separated from the plate, and under severe heating, the
thermocouples sealed out and failed. As a result, the examined range of dynamic stress amplitudes narrowed (to
100 MPa in aluminum).

To increase the resistance of the calorimeters to the action of powerful pulsed electron beams, we designed
the setup shown schematically in Fig. 1. The grounded ring is intended to protect the casing from the action of
electrons. The guys were manufactured from a steel wire of 0.4 mm diameter. One thermocouple is embedded
in the central calorimeter, and four thermocouples are embedded (uniformly over the circumference) in the ring
calorimeter. For a sample of 50–60 mm diameter, the sample shadowing, determined by the surface area of the
central calorimeter of 6 mm diameter, was insignificant. The thermocouples are placed in a groove in the casing
and are led out as a braid. In experiments with samples of 10–15 mm diameter, several ring calorimeters (one
calorimeter for each sample) were housed in the casing and central calorimeters were absent.

Calorimeter temperature variation was recorded by self-recording ÉPP-09M3 potentiometers or N-37 direct
current milliampermeters with an I-37 amplifier. This instrumentation was chosen because of its stability (due
to slow response) to the nano- and microsecond electrical noise occurring in the facilities used. In this case, the
thermal e.m.f. of the thermocouples was measured in approximately 1 sec after irradiation by electrons.

In using the designed setup to diagnose an electron beam, one needs to estimate the thermal characteristics
of the calorimeter and the effect of the electron spectrum and irradiation conditions on measurement results. In
this case, it is necessary to take into account the following circumstances. First, some of the electrons incident on
the calorimeter are reflected from its surface, some electrons leaves the calorimeter through its lateral surfaces due
to scattering, and, finally, the electron energy is partly expended in photon radiation during their deceleration in
the material. As a result, the energy of the incident electrons is not entirely expended in heating the calorimeter.
Second, since the calorimeter is in the atmosphere, it is necessary to take into account the calorimeter temperature
variation due to cooling and redistribution of the absorbed energy over the volume. To correctly take into account
the effect of the above-mentioned factors on the accuracy of electron beam diagnostics, we consider them in more
detail.

To determine the fraction of electron energy absorbed in the calorimeter material, we calculated electron
propagation in iron bodies of different shapes (dFe = 7.8 · 103 g/m3) using the Monte Carlo technique with the
MCNP4A program. The bodies were rings and disks made of St. 3 steel of thickness h = 0.3 cm, including bodies
of the same dimensions as those of the calorimeters (disk radius R0 = 0.3 cm, ring inner radii R1 = 2.0 and 2.25 cm
and outer radii R1 = 2.60 and 2.85 cm). The electron source was a plane parallel to the end surface of the body
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Fig. 2. Electron energy spectra for Emax = 5.2 (a) and 1.05 MeV (b): spectrum 1 refers to t′ ≈
90 nsec and 〈E〉 = 2.59 MeV and spectrum 2 refers to t′ ≈ 25 nsec and 〈E〉 = 2.68 MeV.

TABLE 1

Calculation
version

Sizes,
cm

Emax,
MeV

〈E〉,
MeV

Ea,
MeV

Ee,
MeV

Ep,
MeV

Ee1,
MeV

Ee2,
MeV

χ

No. 1 R0 = 5 5.2 2.59
(0.5)

2.32
(0.6)

0.164
(3)

0.100
(3)

2.3 · 10−3

(22)
0.021
(10)

0.898

No. 2 R0 = 5 5.2 2.68
(0.5)

2.40
(0.6)

0.166
(3)

0.111
(3)

6.3 · 10−3

(13)
0.024
(10)

0.897

No. 3 R0 = 0.5 5.2 2.68
(0.5)

2.18
(0.6)

0.390
(2)

0.110
(3)

5.6 · 10−3

(14)
0.262
(3)

0.813

No. 4 R0 = 0.3 5,2 2,68
(0,5)

2,02
(0.6)

0.550
(2)

0.108
(3)

4.8 · 10−3

(16)
0.433
(3)

0.755

No. 5 R1 = 2.0,
R2 = 2.6

5.2 2.68
(0.5)

2.22
(0.6)

0.355
(2)

0.110
(3)

6.0 · 10−3

(16)
0.231
(3)

0.827

No. 6 R1 = 2.25,
R2 = 2.85

5.2 2.68
(0.5)

2.22
(0.6)

0.355
(2)

0.111
(3)

5.4 · 10−3

(15)
0.231
(3)

0.827

No. 7 R0 = 0.3 1.05 0.431
(0.2)

0.358
(0.5)

7.03 · 10−2

(0.7)
2.74 · 10−3

(3)
0 9.94 · 10−3

(2)
0.831

No. 8 R1 = 2.0,
R2 = 2.6

1.05 0.431
(0.2)

0.363
(0.5)

6.59 · 10−2

(0.7)
2.58 · 10−3

(3)
0 5.22 · 10−3

(3)
0.842

Note. Statistical errors of calculation results are given in parentheses. (1σ, %).

and located at 100 cm from this surface. The direction of electron escape coincided with the normal direction to the
body surface. Figure 2 shows three electron energy spectra Φ(E): two hard spectra with identical maximal energies
Emax = 5.2 MeV for different operating regimes of the IGUR-3 facility (pulse duration t′ ≈ 90 and 25 nsec) [1] and
a softer spectrum with Emax = 1.05 MeV. Collective transfer of electrons and photons was taken into account.

Results of the calculations are given in Table 1, where 〈E〉 is the average beam electron energy, Ea is the
energy of the electrons and photons absorbed in the calorimeter, Ee and Ep are the energies of electrons and photons
that escape from the system, including Ee1 and Ee2, the energies of electrons that escape from the system through
the other end surface and the lateral surfaces, respectively, and χ = Ea/〈E〉 is the fraction of the energy absorbed
in the calorimeter. The given results are normalized per one electron of the source.
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Fig. 3. Thermocouple temperature versus time for the central (a) and ring (b) calorimeters: the
points are experimental data, the curves are least-squares fittings (curve numbers correspond to the
numbers in Table 2).

In calculation version Nos. 1 and 2, we considered a calorimeter shaped like a disk of radius R0 = 5 cm for
two hard electron spectra (Fig. 2a). For both electron spectra, the fraction of the energy absorbed in the calorimeter
were identical. This implies that the value of χ is determined primarily by the average energy of incident electrons
and depends weakly on the shape of the energy spectrum.

The calculation results show that the shape of the calorimeter has a significant effect on the electron energy
absorption in it: the values of χ vary from 0.9 to 0.75 (Table 1). This is due primarily to an increase in the
fraction of electrons that escaped through the lateral surfaces of the calorimeter as its cross-sectional dimension
decreases. The fraction of the beam energy carried away by electrons that passed through the calorimeter is very
low (less than 0.5% 〈E〉). The energy of photons that escaped from the calorimeter does not depend on the cross-
sectional dimension of the calorimeter and is approximately 3% of the initial electron energy. For both types of ring
calorimeter, the calculation results coincide within the error despite the difference in the outer and inner radii (for
an identical width of the ring R2 −R1).

In version Nos. 7 and 8, the average energy of the source electrons (Fig. 2b) was approximately six times
lower than that for the first two spectra (Fig. 2a); therefore, the electron free path in the calorimeter and the energy
loss by radiation are smaller and, hence, the fraction of the absorbed energy is higher.

To take into account the effect of electron scattering in air on the energy absorbed in the calorimeter, we
performed calculations modeling the passage of unidirectional electrons through an air layer of different thicknesses
(3 and 30 cm) between the source and the ring calorimeter. The results showed that the value of χ did not change
within the statistical error (1σ ≈ 1–2%).

To determine the calorimeter temperature T at the thermocouple location from the measured thermal e.m.f.,
we used an approximating polynomial [7]. Figure 3 shows curves of calorimeter temperature versus time during
cooling after exposure to an electron beam. The coefficients of the approximating polynomial of the form T = a0−a1t

for each of these dependences and the maximum heating of the calorimeters T1 (the first measured temperature
value) are given in Table 2. From the data given in Fig. 3, it follows that for the recording time (1–20 sec), the
dependence T (t) can be considered linear with sufficient accuracy (especially for the central calorimeter).

Let us determine the relationship of the experimental constants a0 and a1 with the calorimeter heating and
its thermal characteristics. The change in the calorimeter temperature after electron-beam irradiation is due to
heat transfer to the ambient air by free convection and thermal radiation. The effect of thermal conduction through
the calorimeter mounting elements on the process of calorimeter cooling can be ignored because the steel wire has
a small diameter and is heated simultaneously with the calorimeter by the electron beam.
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TABLE 2

Central calorimeter Ring calorimeter

Curve number
in Fig. 3a

T1,◦C a0 a1
Curve number

in Fig. 3b
T1,◦C a0 a1

1 21.1 20.9 0.170 1 38.2 39.4 0.253
2 50.9 51.3 0.512 2 46.55 47.5 0.454
3 62.9 63.8 0.567 3 49.2 49.8 0.470
4 63.4 66.3 0.574 4 50.5 51.4 0.406
5 73.2 74.5 0.631 5 52.6 52.7 0.329
6 88.1 89.7 0.916 6 60.3 61.5 0.487
7 96.4 97.7 1.110
8 170.4 174.2 1.730

Since the change in the calorimeter temperature under cooling is insignificant over the measurement time,
the expression for heat exchange on the calorimeter surface can be written as

f = α(T − T∞) + σsε(T 4 − T 4
∞) = α∗(T )(T − T∞) ≈ α∗(T1)(T − T∞),

where f is the heat flux density, T∞ is the ambient temperature, α is the coefficient of heat release by free convection
of air, σs = 5.67·10−8 W/(m2 ·K4) is the Stefan–Boltzmann constant, and ε is the emissivity factor of the calorimeter
surface (ε ≈ 0.7 [8]).

From consideration of the one-dimensional problem of cooling of a body on whose surface there is heat
exchange with the ambient medium, it follows that the characteristic time of temperature variation is determined
by the quantity τ0 = τ/x2

1, where τ = h2Cd/λ (h is the size of the body, λ is the thermal conductivity of the
material, C is its specific heat, d is the density) and x1 is the least root of the equation x tan x = L = α∗h/λ [8].
Under the conditions considered (h = 0.3 cm) even for E ≈ 200 J/cm2, which corresponds to a calorimeter heating
of approximately 180◦C, taking into account heat release by free convection [α∗ < 100 W/(m2 ·K)], we have
L < 5 · 10−3 � 1 [for iron, λ = 57 W/(m ·K] at T = 100◦C [9]) and τ0 ' Cdh/α � τ . The characteristic time of
variation in the average calorimeter temperature τ0 is much larger than the time of heat propagation within the
calorimeter τ . Therefore, for calorimeter cooling at times t > τ , the temperature distribution over the calorimeter
volume can be considered uniform. Then, integration of the heat-conduction equation over the calorimeter volume
subject to the boundary conditions leads to the equation

C(T )V d
dT

dt
+ α∗(T )Ss(T − T∞) = 0 (1)

with the initial condition T |t=0 = 〈T0〉, where 〈T0〉 is the average calorimeter temperature after irradiation. In (1),
V is the calorimeter volume and Ss is the total calorimeter surface area on which heat exchange occurs.

Since for calorimeter cooling, the experimental temperature–time dependences are linear, we seek a solution
of Eq. (1) in an approximation linear in time:

T (t) = 〈T0〉 − (〈T0〉 − T∞)t/τ0, τ0 = C(〈T0〉)V d/(α∗(〈T0〉)Ss). (2)

We note that the above expression for the calorimeter considered is valid under the condition t/τ0 � 1, which,
in turn, holds at t < 40 sec (for iron, C = 462 J/(kg ·K) at T = 20◦C [9]). Comparing the form of the first
expression in (2) with the polynomial approximating experimental data, we obtain a0 = 〈T0〉. Thus, extrapolating
the experimental dependences at the moment of termination of the electron pulse, we obtain the temperature
averaged over the calorimeter volume at this time.

Since the electron pulse duration is much smaller than the characteristic time of heat propagation in the
calorimeter (τ ≈ 0.1 sec), it can be assumed that the heat release in the calorimeter volume occurs simultaneously
and the temperature at each point is determined by the absorbed particle energy. After a lapse of time t > τ , the
temperature becomes equal to the temperature-averaged over the calorimeter volume. We note that the calorimeter
heat losses by radiation within this time due to overheating of the irradiated surface (calculations show that
the heating of the regions adjacent to the surface is less than twice the average heating of the calorimeter) are
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approximately 0.1% of the electron energy incident on the calorimeter. Then, with allowance for the temperature
dependence of the specific heat of iron, the relation between the calorimeter temperature at the moment of pulse
termination 〈T0〉 and the particle energy absorbed in the calorimeter during the pulse Ea is defined by the relation

V d

〈T0〉∫
T∞

C(T ) dT = Ea = χWS,

where W is the energy fluence of the beam electrons (which is constant on the irradiated calorimeter surface S).
Using the data of [10] on the temperature dependence of the specific heat of iron in the range from 250 to

600 K, the quantity W can be expressed in terms of known values of T∞ and 〈T0〉 = a0 as follows:

W = hd(H(〈T0〉)−H(T∞))/χ,

H(T ) =
∫
C(T ) dT =

{
422T + 67(T − 250)2/300, 250 6 T 6 400,
489T + 85(T − 400)2/400, 400 6 T 6 600

(h is the thickness of the calorimeter).
The average value α∗ can be estimated using experimental data on cooling of the calorimeters (Fig. 3).

Indeed, the form of expressions (2) implies

α∗(T1) = a1C(〈T0〉)V d/((〈T0〉 − T∞)Ss).

Among the quantities included in the given expression, the ambient temperature is an unknown; in the experiments,
it was 17–22◦C. The coefficients α∗ for each measurement at T∞ = 17 and 22◦C were found taking into account
the dimensions of the central and ring calorimeters and the measured values of a1 and 〈T0〉 = a0 (Table 2). From
the results of calculations for different measurements, we determined the average value and standard deviation:
α∗ = (31.8 ± 6.8) W/(m2 ·K). The obtained value ensures satisfaction of the condition L � 1 for the calorimeter
considered, which, in turn, allows the use of this calorimeter and the procedure described above to determine the
magnitude of the electron beam energy fluence from calorimeter temperature measurements during calorimeter
cooling.

The proposed calorimeter design, repeatedly used in experiments (see [2, 11]), allow measurements of electron
energy fluence on IGUR-3 and ÉMIR-M facilities up to (2.0–2.5) ·102 J/cm2 (this corresponds to pressures of about
2 GPa in aluminum). This has made it possible to explore spallation in copper and aluminum alloys, to measure the
Grüneisen coefficient of pyrocarbon, etc. The design turned out to be convenient in operation because it is resistant
to the action of an electron beam and can be used as a separate unit. It can be mounted in a device for irradiating
samples, replaced in the case of damage due to reuse near limiting values of energy fluence, etc. It is possible to
estimate the applicability limit for the given calorimeter design at different irradiation levels. The limiting value
of W is determined by spallation of the material of the calorimeter face (initial stage of damage in a single exposure
to an electron beam) and depends on a number of parameters: the spectrum and duration of the electron beam
of the facility, the thermodynamic parameters of the calorimeter material, etc. For a calorimeter made of St. 3
steel and the facilities used, the limiting value of the electron energy fluence is approximately 300 J/cm2, and for
titanium or carbon calorimeters, it is larger.
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